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Abstract Scaling properties near the critical point indicates the existence of self-
similarity behavior for the critical phenomena. Although the system considered here is
not a truly dynamic one, we propose a specific set of relations between fractal dimen-
sions and critical exponents in the Ising model of statistical mechanics. In particular,
we put forward, corresponding to six critical exponents for the Ising model, six fractal
dimensions. Assuming the latter proposals, we can then derive relationships between
such fractal dimensions.
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1 Introduction

The critical phenomena exist in various second-order phase transitions, which have
attracted extensive interest [1,2]. On the other route, the dynamic complexity has been
intensively investigated in various areas [3-5]. The definition of fractals has been
shown to be applicable for a wide variety of disciplines: such as physics, chemistry,
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Table 1 Critical exponents «, B, ¥, §, n and v of Ising systems

Ising o B Y 3 n v
1D - - 2 00 1 2
2D 0 % I 15 i 1

3 S 13 1 2
3D 0 8 1 3 g 3
4D 0 3 1 3 0 %

The exact values for dimensionalities 1, 2 and 4 of the Ising model are listed together with those obtained
by means of two conjectures for three dimensions in [6]

biology, neurology, astronomy, geophysics, meteorology and economics. The scaling
properties near the critical point indicate the existence of the self-similarity behavior
for the critical phenomena. Although the Ising system considered here is not a truly
dynamic one, analogous to the definition of the fractal dimensions in other systems, it
seems reasonable for us to consider that physical quantities near a critical point could
be measured by some parameters (i.e., temperature and a magnetic field) so that the
fractal dimensions could be defined also for the critical phenomena.

One of us (ZDZ [6]; see also [7] and [8]) has, by means of two conjectures, obtained
precise proposals for the six critical exponents of the Ising model Hamiltonian in three
dimensions (d = 3). Using previously known results for d = 1, 2 and 4, Table 1 has
thereby been constructed. Our purpose below is to propose definitions of the fractal
dimensions for the critical behaviour summarized in Table 1. However, before we turn
to these definitions, let us summarize well-established connections between the crit-
ical exponents already displayed in Table 1 (see also Klein and March [9] for a brief
summary of the four relations we appeal to). The first goes back at least to Rushbrooke
[10] and reads

a+28+y =2 (1)
while Griffiths [11] proposed the result
y =BG —1). )
Thirdly we have the result of Fisher [12] that
y=v2-—mn. 3)

But the most crucial result in the context of the present article is due to Josephson [13]
which, unlike Egs. (1)—(3), involves directly the dimensionality and reads

vd =2 —a. “4)
With the above as background to the critical behaviour of the Ising model in d dimen-

sions, we turn in Sect. 2 immediately below to propose definitions of the fractal
dimension df associated with the six critical exponents entering the relations (1)—(4).
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2 Proposed definitions of the fractal dimensions for critical phenomena

According to the definition of the fractal dimensions, and considering the real dimen-
sions of the system, we define fractal dimensions associated with the six critical expo-
nents entering the relations (1)—(4) as follows:

dy=d—p 5)
& =d— 1 (6)
Y B
df =d+a (7)
df =d+y (8)
dy=d+v ©)
and finally
d} =2d —2+n. (10)

We next demonstrate the relations between these definitions of the fractal dimensions
for critical phenomena.

2.1 Relations between proposed definitions (5)—(10) for fractal dimensions
for critical properties

From a particular linear combination of Egs. (5), (7), and (8), it may readily be verified
that

dY =24} +d} =a+2p+y =2. (11)

where the last step in reading Eq. (11) have invoked the Rushbrooke equality (1).
Secondly, by forming d — d‘}’ﬁ from Eq. (7), which immediately is seen to equal
minus ¢, and d}i —d = v from Eq. (9), we see that the relation

2-d+d=d(dj-d) (12)

is equivalent to Josephson relation (4). Thirdly, using again the result given above, for
d}i — d(=v) and that from Eq. (8) d}/ —d =y, it follows that

bl

%
df—d _v
dj‘i—d v
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Table 2 Critical dimensions of Ising systems

. o B Y 8 n v
Ising df df df df df df
1D 1 1 3 1 1 3

15 15 29 9
2D 2 T 7 i3 1 3
21 17 36 33 1
3D 3 3 T 3 3 3
7 11 9
4D 4 1 5 q 6 9

All the values for the fractal dimensions are derived from the corresponding critical exponents listed in
Table 1 by using Egs. (5)—(10)

But from Eq. (10) 2d — d” = 2 — n which by appealing to the Fisher result (3) is
equal to y /v. Hence we reach the relation

(d; - d) (2d - d}) =d/ —d. (13)

Finally, but without going into details, we record the fourth such relation as

(a-d}) (af —a) = (a-d}) (1-d+a}). (14)

This is verified by detailed use of Egs. (2), (5), (6) and (8).

2.2 Explicit forms proposed for critical dimensions of Ising systems

To complete this section, we utilize the Ising critical exponents already collected in
Table 1, plus the proposed definitions of fractal dimensions in Egs. (5)—(10), to con-
struct Table 2. As anticipated in the title and abstract, twelve out of eighteen entries
have fractal character if we focus on dimensionalities 2, 3 and 4 of the Ising model.
It could be concluded from Table 2 that for the 1D Ising model, the fractal dimen-
sions d? d’ - d‘s and d? are the same as the spatial dimensionality d. The values for
d”‘ are equal to the real dimensions of the system for d = 1, 2, 3, and 4, revealing that
measurlng the specific heat Cy is very particular, which shows logarithmic singularity
at the critical point (for d =2 and 3). The fractal dimension d” or dé for measuring
the order parameter (i.e., magnetization M) is smaller than the dimensionality d. This
is consistent with the fact that the blocks of the correlated spins near the critical point
do not fill the whole space of the system. On the contrary, other fractal dimensions are
larger than the dimensionality d. It means that measuring other physical properties,
like the magnetic susceptibility x, the correlation length & and the spin—spin correla-
tion function G (r), differs with that for the magnetization. It is analogous to measure
those properties in the space with the dimensionality higher than the spatial dimensions
of the Ising system. For the Ising model, the fractal dimension for measuring a fixed
property (except the specific heat Cy) increases with increasing the dimensionality d.
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3 Summary and future directions

The main focal points of the present article are (i) the definitions proposed of the
fractal dimensions for critical properties defined in Eqgs. (5)—(10) and (ii) the specific
values thereby obtained and shown in Table 2 for Ising systems with dimensionalities
2, 3 and 4 inclusive.

For the future, it will of course be of considerable interest if it proves possible to
connect our predictions with, say, practical magnetism, and if one understands deeper
physical insights of these fractal dimensions. A further direction of potential inter-
est for the future lies in quantum mechanics and, to be quite specific in one-body
potential theory of atoms [14]. We conclude by referring briefly to the use of the frac-
tional Schrodinger equation (FSE) [15] to treat such fractal dimensionality in atoms.
If the one-body potential energy is denoted by V(r), which has an additive contri-
bution, as yet unknown, from exchange (x) and correlation (c), namely Vy.(r), then
one could use the FSE to calculate one-body eigenfunctions V;(r) and corresponding
eigenvalues ;. We only note in the semiclassical Thomas-Fermi (TF) limit [15] that
the so-called Slater sum S(r, B) is defined exactly by

S(r, B) = D i ()i x (r) exp(—B €0), (15)

alli

becomes, in the semiclassical TF approximation [16]; see also [17]

Ste(r, B) = exp (=pV(r)) (16)

2n ﬂ)"/2

where B = 1/kgT, with kg denoting Boltzmann’s constant. It seems natural enough,
at least in semiclassical theory, to use Eq. (16), which is demonstrably semiclassically
correct for all integral d, for fractal dimension. For the moment, however, transcending
the TF approximation (16) is hampered by the shortage of exact analysis of the FSE
for even relatively simple one-body potential V(r). But more analytical progress can
be expected in this quantum mechanical area in the foreseeable future.
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